2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-11.2
Paper Title Self-training and Pre-training are complementary for Speech Recognition
Authors Qiantong Xu, Alexei Baevski, Tatiana Likhomanenko, Paden Tomasello, Alexis Conneau, Ronan Collobert, Gabriel Synnaeve, Michael Auli, Facebook AI Research, United States
SessionMLSP-11: Self-supervised Learning for Speech Processing
LocationGather.Town
Session Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-SSUP] Self-supervised and semi-supervised learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Self-training and unsupervised pre-training have emerged as effective approaches to improve speech recognition systems using unlabeled data. However, it is not clear whether they learn similar patterns or if they can be effectively combined. In this paper, we show that pseudo-labeling and pre-training with wav2vec 2.0 are complementary in a variety of labeled data resource-setups. Using just 10 minutes of labeled data from Libri-light as well as 53k hours of unlabeled data from LibriVox achieves word error rates (WER) of 2.8%/4.8% on the clean and other test sets of Librispeech -- rivaling the best published systems trained on 960 hours of labeled data only a year ago. Training on all labeled data of Librispeech WERs of 1.5%/3.1%.