2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-2.5
Paper Title AN ASYMPTOTICALLY POINTWISE OPTIMAL PROCEDURE FOR SEQUENTIAL JOINT DETECTION AND ESTIMATION
Authors Dominik Reinhard, Technische Universität Darmstadt, Germany; Michael Fauß, Princeton University, United States; Abdelhak M. Zoubir, Technische Universität Darmstadt, Germany
SessionSPTM-2: Detection Theory and Methods 2
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Signal Processing Theory and Methods: [SSP] Statistical Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We investigate the problem of jointly testing two hypotheses and estimating a random parameter based on sequentially observed data whose distribution belongs to the exponential family. The aim is to design a scheme which minimizes the expected number of used samples while limiting the detection and estimation errors to pre-set levels. This constrained problem is first converted to an unconstrained problem which is then reduced to an optimal stopping problem. To solve the optimal stopping problem, we propose an asymptotically pointwise optimal (APO) stopping rule, i.e., a stopping rule that is optimal when the tolerated detection and estimation errors tend to zero. The policy parameterizing coefficients are then chosen such that the constraints on the detection and estimation errors are fulfilled. The proposed theory is illustrated with a numerical example.