2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-11.4
Paper Title SIMILARITY ANALYSIS OF SELF-SUPERVISED SPEECH REPRESENTATIONS
Authors Yu-An Chung, Massachusetts Institute of Technology, United States; Yonatan Belinkov, Technion Henry and Marilyn Taub Faculty of Computer Science, Israel; James Glass, Massachusetts Institute of Technology, United States
SessionMLSP-11: Self-supervised Learning for Speech Processing
LocationGather.Town
Session Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-SSUP] Self-supervised and semi-supervised learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Self-supervised speech representation learning has recently been a prosperous research topic. Many algorithms have been proposed for learning useful representations from large-scale unlabeled data, and their applications to a wide range of speech tasks have also been investigated. However, there has been little research focusing on understanding the properties of existing approaches. In this work, we aim to provide a comparative study of some of the most representative self-supervised algorithms. Specifically, we quantify the similarities between different self-supervised representations using existing similarity measures. We also design probing tasks to study the correlation between the models' pre-training loss and the amount of specific speech information contained in their learned representations. In addition to showing how various self-supervised models behave differently given the same input, our study also finds that the training objective has a higher impact on representation similarity than architectural choices such as building blocks (RNN/Transformer/CNN) and directionality (uni/bidirectional). Our results also suggest that there exists a strong correlation between pre-training loss and downstream performance for some self-supervised algorithms.