2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-18.3
Paper Title STRUCTURED SUPPORT EXPLORATION FOR MULTILAYER SPARSE MATRIX FACTORIZATION
Authors Quoc-Tung Le, Rémi Gribonval, Ecole Normale Supérieure de Lyon, France
SessionMLSP-18: Matrix Factorization and Applications
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-MFC] Matrix factorizations/completion
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Matrix factorization with sparsity constraints plays an important role in many machine learning and signal processing problems such as dictionary learning, data visualization, dimension reduction. Among the most popular tools for sparse matrix factorization are proximal algorithms, a family of algorithms based on proximal operators. In this paper, we address two problems with the application of proximal algorithms to sparse matrix factorization. On the one hand, we analyze a weakness of proximal algorithms in sparse matrix factorization: the premature convergence of the support. A remedy is also proposed to address this problem. On the other hand, we describe a new tractable proximal operator called Generalized Hungarian Method, associated to so-called k-regular matrices, which are useful for the factorization of a class of matrices associated to fast linear transforms. We further illustrate the effectiveness of our proposals by numerical experiments on the Hadamard Transform and magnetoencephalography matrix factorization.