2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIFS-1.6
Paper Title An End-to-End Dense-InceptionNet for Image Copy-Move Forgery Detection
Authors Jun-Liu Zhong, Chi-Man Pun, University of Macau, Macau SAR China
SessionIFS-1: Multimedia Forensics 1
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Information Forensics and Security: [MMH-OTHS] Forensics & Security Related Applications
Abstract A novel image copy-move forgery detection scheme using a Dense-InceptionNet is proposed in this paper. Dense-InceptionNet is an end-to-end, multi-dimensional dense-feature connection, Deep Neural Network (DNN). It is the first DNN model to autonomously learn the feature correlations and search the possible forgery snippets through the matching clues. The proposed Dense-InceptionNet consists of Pyramid Feature Extractor (PFE), Feature Correlation Matching (FCM), and Hierarchical Post-Processing (HPP) modules. The PFE module is proposed to extract multi-dimensional and multi-scale dense-features. The features of each layer in this extractor module are directly connected to the preceding layers. The FCM module is proposed to learn the high correlations of deep features and obtain three candidate matching maps. Finally, the HPP module which makes use of three matching maps to obtain a combination of cross-entropies is amenable to better training via backpropagation. Experiments demonstrate that the efficiency of the proposed Dense-InceptionNet is much better than the other state-of-the-art methods while achieving the relative best performance against most known attacks.