2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-58.1
Paper Title A SEQUENTIAL CONTRASTIVE LEARNING FRAMEWORK FOR ROBUST DYSARTHRIC SPEECH RECOGNITION
Authors Lidan Wu, Daoming Zong, Jing Zhao, Shiliang Sun, East China Normal University, China
SessionSPE-58: Dysarthric Speech Processing
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Speech Processing: [SPE-ANLS] Speech Analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Dysarthria is a manifestation of the disruption in the neuro-muscular physiology resulting in uneven, slow, slurred, harsh, or quiet speech. Despite the remarkable progress of automatic speech recognition (ASR), it poses great challenges in developing stable ASR for dysarthric individuals due to the high intra- and inter-speaker variations and data deficiency. In this paper, we propose a contrastive learning framework for robust dysarthric speech recognition (DSR) by capturing the dysarthric speech variability. Several speech data augmentation strategies are explored to form two branches of the framework, meanwhile alleviating the scarcity of dysarthria data. We also develop an efficient projection head acting on a sequence of learned hidden representations for defining contrastive loss. Experiment results on DSR demonstrate that the model is better than or comparable to the supervised baseline.