2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIFS-4.4
Paper Title LOOKING THROUGH WALLS: INFERRING SCENES FROM VIDEO-SURVEILLANCE ENCRYPTED TRAFFIC
Authors Daniele Mari, University of Padova, Italy; Samuele Giuliano Piazzetta, ETH Zurich, Switzerland; Sara Bordin, Luca Pajola, Sebastiano Verde, Simone Milani, Mauro Conti, University of Padova, Italy
SessionIFS-4: Surveillance, Biometrics and Security
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Information Forensics and Security: [SUR] Surveillance
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Nowadays living environments are characterized by networks of interconnected sensing devices that accomplish different tasks, e.g., video surveillance of an environment by a network of CCTV cameras. A malicious user could gather sensitive details on people's activities by eavesdropping the exchanged data packets. To overcome this problem, video streams are protected by encryption systems, but even secured channels may still leak some information. In this paper, we show that it is possible to infer visual data by intercepting the encrypted video stream of a surveillance system, and how this may be leveraged to track the movements of a person inside the secured area. We trained an automatic classifier on a computer graphic simulator and tested it on real videos, with standard encryption protocols. Experiments proved the transferability of the classifier trained on synthetic sequences, succeeding in the detection of up to four different walking directions on real videos, with a limited amount of intercepted traffic.