2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-33.3
Paper Title UNSUPERVISED MOTION REPRESENTATION ENHANCED NETWORK FOR ACTION RECOGNITION
Authors Xiaohang Yang, Lingtong Kong, Jie Yang, Shanghai Jiao Tong University, China
SessionIVMSP-33: Action Recognition
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVARS] Image & Video Analysis, Synthesis, and Retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Learning reliable motion representation between consecutive frames, such as optical flow, has proven to have great promotion to video understanding. However, the TV-L1 method, an effective optical flow solver, is time-consuming and expensive in storage for caching the extracted optical flow. To fill the gap, we propose UF-TSN, a novel end-to-end action recognition approach enhanced with an embedded lightweight unsupervised optical flow estimator. UF-TSN estimates motion cues from adjacent frames in a coarse-to-fine manner and focuses on small displacement for each level by extracting pyramid of feature and warping one to the other according to the estimated flow of the last level. Due to the lack of labeled motion for action datasets, we constrain the flow prediction with multi-scale photometric consistency and edge-aware smoothness. Compared with state-of-the-art unsupervised motion representation learning methods, our model achieves better accuracy while maintaining efficiency, which is competitive with some supervised or more complicated approaches.