2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-8.5
Paper Title UNIT SELECTION SYNTHESIS BASED DATA AUGMENTATION FOR FIXED PHRASE SPEAKER VERIFICATION
Authors Houjun Huang, Xu Xiang, Fei Zhao, AISpeech Ltd, Suzhou, China; Shuai Wang, Yanmin Qian, Shanghai Jiao Tong University, China
SessionSPE-8: Speaker Recognition 2: Channel and Domain Robustness
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Speech Processing: [SPE-SPKR] Speaker Recognition and Characterization
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Data augmentation is commonly used to help build a robust speaker verification system, especially in limited-resource case. However, conventional data augmentation methods usually focus on the diversity of acoustic environment, leaving the lexicon variation neglected. For text dependent speaker verification tasks, it's well-known that preparing training data with the target transcript is the most effectual approach to build a well-performing system, however collecting such data is time-consuming and expensive. In this work, we propose a unit selection synthesis based data augmentation method to leverage the abundant text-independent data resources. In this approach text-independent speeches of each speaker are firstly broke up to speech segments given to their phonetic content. Then segments that contain phonetics in the target transcript are selected to produce a speech with the target transcript by concatenating them in turn. Experiments are carried out on the AISHELL Speaker Verification Challenge 2019 database, the results and analysis shows that our proposed method can boost the system performance significantly.