2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-31.5
Paper Title Decentralizing Feature Extraction with Quantum Convolutional Neural Network for Automatic Speech Recognition
Authors Chao-Han Huck Yang, Jun Qi, Georgia Institute of Technology, United States; Pin-Yu Chen, IBM Research, United States; Yen-Chi Samuel Chen, Brookhaven National Laboratory, United States; Sabato Marco Siniscalchi, University of Enna, Italy; Xiaoli Ma, Brookhaven National Laboratory, United States; Chin-Hui Lee, Georgia Institute of Technology, United States
SessionSPE-31: Speech Recognition 11: Novel Approaches
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-GASR] General Topics in Speech Recognition
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We propose a novel decentralized feature extraction approach in federated learning to address privacy-preservation issues for speech recognition. It is built upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction, and a recurrent neural network (RNN) based end-to-end acoustic model (AM). To enhance model parameter protection in a decentralized architecture, an input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram, and the corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters. The encoded features are then down-streamed to the local RNN model for the final recognition. The proposed decentralized framework takes advantage of the quantum learning progress to secure models and to avoid privacy leakage attacks. Testing on the Google Speech Commands Dataset, the proposed QCNN encoder attains a competitive accuracy of 95.12% in a decentralized model, which is better than the previous architectures using centralized RNN models with convolutional features. We also conduct an in-depth study of different quantum circuit encoder architectures to provide insights into designing QCNN-based feature extractors. Neural saliency analyses demonstrate a correlation between the proposed QCNN features, class activation maps, and input spectrograms. We provide an implementation for future studies.