2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-26.5
Paper Title GLOBAL-LOCALIZED AGENT GRAPH CONVOLUTION FOR MULTI-AGENT REINFORCEMENT LEARNING
Authors Yuntao Liu, Yong Dou, Siqi Shen, Peng Qiao, National University of Defence Technology, China
SessionMLSP-26: Reinforcement Learning 2
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-REI] Reinforcement learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract A lot of efforts have been devoted to solving the problem about complex relationship and localized cooperation between a large number of agents in large-scale multi-agent systems. However, global cooperation among all agents is also important while interactions between agents often happen locally. It is a challenging problem to enable agent to learn global and localized cooperate information simultaneously in multi-agent systems. In this paper, we model the global and localized cooperation among agents by global and localized agent graphs and propose a novel graph convolutional reinforcement learning mechanism based on these two graphs which allows each agent to communicate with neighbors and all agents to cooperate at the high level. Experiments on the large-scale multi-agent scenarios in StarCraft II show that our proposed method gets better performance compared with state-of-the-art algorithms and allows agents learning to cooperate efficiently.