2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-7.1
Paper Title SPEEDING UP OF KERNEL-BASED LEARNING FOR HIGH-ORDER TENSORS
Authors Ouafae Karmouda, Jeremie Boulanger, Remy Boyer, University of Lille, France
SessionMLSP-7: Tensor Signal Processing
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-TNSR] Tensor-based signal processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Supervised learning is a major task to classify datasets. In our context, we are interested into classification from high-order tensors datasets. The "curse of dimensionality" states that the complexities in terms of storage and computation grow exponentially with the order. As a consequence, the method from the state-of-art based on the Higher-Order SVD (HOSVD) works well but suffers from severe limitation in terms of complexities. In this work, we propose a fast Grassmannian kernel-based method for high-order tensor learning based on the equivalence between the Tucker and the tensor-train decompositions. Our solution is linked to the tensor network, where the aim is to break the initial high-order tensor into a collection of low-order tensors (at most 3-order). We show on several real datasets that the proposed method reaches a similar accuracy classification rate as the Grassmannian kernel-based method based on the HOSVD but for a much lower complexity.