2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-2.4
Paper Title Quickest Joint Detection and Classification of Faults In Statistically Periodic Processes
Authors Taposh Banerjee, University of Texas at San Antonio, United States; Smruti Padhy, University of Texas at Austin, United States; Ahmad Taha, Eugene John, University of Texas at San Antonio, United States
SessionSPTM-2: Detection Theory and Methods 2
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Signal Processing Theory and Methods: [SSP] Statistical Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract An algorithm is proposed to detect and classify a change in the distribution of a stochastic process that has periodic statistical behavior. The problem is posed in the framework of independent and periodically identically distributed (i.p.i.d.) processes, a recently introduced class of processes to model statistically periodic data. It is shown that the proposed algorithm is asymptotically optimal as the rate of false alarms and the probability of misclassification goes to zero. This problem has applications in anomaly detection in traffic data, social network data, ECG data, and neural data, where periodic statistical behavior has been observed. The effectiveness of the algorithm is demonstrated by application to real and simulated data.