2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-45.3
Paper Title PHASE TRANSITIONS FOR ONE-VS-ONE AND ONE-VS-ALL LINEAR SEPARABILITY IN MULTICLASS GAUSSIAN MIXTURES
Authors Ganesh Ramachandra Kini, University of California, Santa Barbara, United States; Christos Thrampoulidis, University of British Columbia, Canada
SessionMLSP-45: Performance Bounds
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-PERF] Bounds on performance
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We study a fundamental statistical question in multiclass classification: When are data linearly separable? Unlike binary classification, linear separability in multiclass settings can be defined in different ways. Here, we focus on the so called one-vs-one (OvO) and one-vs-all (OvA) linear separability. We consider data generated from a Gaussian mixture model (GMM) in a linear asymptotic high-dimensional regime. In this setting, we prove that both the OvO and OvA separability undergo a sharp phase-transition as a function of the overparameterization ratio. We present precise formulae characterizing the phase transitions as a function of the data geometry and the number of classes. Existing results on binary classification follow as special cases of our new formulae. Numerical simulations verify the validity of the asymptotic predictions in finite dimensions.