2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-35.5
Paper Title A MODULATION-DOMAIN LOSS FOR NEURAL-NETWORK-BASED REAL-TIME SPEECH ENHANCEMENT
Authors Tyler Vuong, Yangyang Xia, Richard Stern, Carnegie Mellon University, United States
SessionSPE-35: Speech Enhancement 5: DNS Challenge Task
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Speech Processing: [SPE-ENHA] Speech Enhancement and Separation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract We describe a modulation-domain loss function for deep-learning-based speech enhancement systems. Learnable spectro-temporal receptive fields (STRFs) were adapted to optimize for a speaker identification task. The learned STRFs were then used to calculate a weighted mean-squared error (MSE) in the modulation domain for training a speech enhancement system. Experiments showed that adding the modulation-domain MSE to the MSE in the spectro-temporal domain substantially improved the objective prediction of speech quality and intelligibility for real-time speech enhancement systems without incurring additional computation during inference.