2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDAUD-22.1
Paper Title Learning Contextual Tag Embeddings for Cross-Modal Alignment of Audio and Tags
Authors Xavier Favory, Music Technology Group, Universitat Pompeu Fabra, Spain; Konstantinos Drossos, Tuomas Virtanen, Audio Research Group, Tampere University, Finland; Xavier Serra, Music Technology Group, Universitat Pompeu Fabra, Spain
SessionAUD-22: Detection and Classification of Acoustic Scenes and Events 3: Multimodal Scenes and Events
LocationGather.Town
Session Time:Thursday, 10 June, 15:30 - 16:15
Presentation Time:Thursday, 10 June, 15:30 - 16:15
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-CLAS] Detection and Classification of Acoustic Scenes and Events
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Self-supervised audio representation learning offers an attractive alternative for obtaining generic audio embeddings, capable to be employed into various downstream tasks. Published approaches that consider both audio and words/tags associated with audio do not employ text processing models that are capable to generalize to tags unknown during training. In this work we propose a method for learning audio representations using an audio autoencoder (AAE), a general word embeddings model (WEM), and a multi-head self-attention (MHA) mechanism. MHA attends on the output of the WEM, providing a contextualized representation of the tags associated with the audio, and we align the output of MHA with the output of the encoder of AAE using a contrastive loss. We jointly optimize AAE and MHA and we evaluate the audio representations (i.e. the output of the encoder of AAE) by utilizing them in three different downstream tasks, namely sound, music genre, and music instrument classification. Our results show that employing multi-head self-attention with multiple heads in the tag-based network can induce better learned audio representations.