2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDMLSP-33.4
Paper Title DECENTRALIZED OPTIMIZATION ON TIME-VARYING DIRECTED GRAPHS UNDER COMMUNICATION CONSTRAINTS
Authors Yiyue Chen, Abolfazl Hashemi, Haris Vikalo, University of Texas at Austin, United States
SessionMLSP-33: Optimization Methods
LocationGather.Town
Session Time:Thursday, 10 June, 15:30 - 16:15
Presentation Time:Thursday, 10 June, 15:30 - 16:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-DFED] Distributed/Federated learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract We consider the problem of decentralized optimization where a collection of agents, each having access to a local cost function, communicate over a time-varying directed network and aim to minimize the sum of those functions. In practice, the amount of information that can be exchanged between the agents is limited due to communication constraints. We propose a communication-efficient algorithm for decentralized convex optimization that rely on sparsification of local updates exchanged between neighboring agents in the network. In directed networks, message sparsification alters column-stochasticity -- a property that plays an important role in establishing convergence of decentralized learning tasks. We propose a decentralized optimization scheme that relies on local modification of mixing matrices, and show that it achieves $\O(\frac{\mathrm{ln}T}{\sqrt{T}})$ convergence rate in the considered settings. Experiments validate theoretical results and demonstrate efficacy of the proposed algorithm.