2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDASPS-7.5
Paper Title SQWA: STOCHASTIC QUANTIZED WEIGHT AVERAGING FOR IMPROVING THE GENERALIZATION CAPABILITY OF LOW-PRECISION DEEP NEURAL NETWORKS
Authors Sungho Shin, Yoonho Boo, Wonyong Sung, Seoul National University, South Korea
SessionASPS-7: Data Science & Machine Learning
LocationGather.Town
Session Time:Thursday, 10 June, 16:30 - 17:15
Presentation Time:Thursday, 10 June, 16:30 - 17:15
Presentation Poster
Topic Applied Signal Processing Systems: Signal Processing Systems [DIS-EMSA]
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Low-precision deep neural networks (DNNs) are very needed for efficient implementations, but severe quantization of weights often sacrifices the generalization capability and lowers the test accuracy. We present a new quantized neural network optimization approach, stochastic quantized weight averaging (SQWA), to design low-precision DNNs with good generalization capability using model averaging. The proposed approach includes (1) floating-point model training, (2) direct quantization of weights, (3) capturing multiple low precision models during retraining with cyclical learning rates, (4) averaging the captured models, and (5) re-quantizing the averaged model and fine-tuning it with low-learning rates. With SQWA training, we could develop the best performing QDNNs for image classification on ImageNet datasets and also for semantic segmentation on Pascal VOC 2012 dataset.