Paper ID | SPE-41.2 |
Paper Title |
A HYBRID CNN-BILSTM VOICE ACTIVITY DETECTOR |
Authors |
Nicholas Wilkinson, Thomas Niesler, Stellenbosch University, South Africa |
Session | SPE-41: Voice Activity and Disfluency Detection |
Location | Gather.Town |
Session Time: | Thursday, 10 June, 15:30 - 16:15 |
Presentation Time: | Thursday, 10 June, 15:30 - 16:15 |
Presentation |
Poster
|
Topic |
Speech Processing: [SPE-VAD] Voice Activity Detection and End-pointing |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
This paper presents a new hybrid architecture for voice activity detection (VAD) incorporating both convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) layers trained in an end-to-end manner. In addition, we focus specifically on optimising the computational efficiency of our architecture in order to deliver robust performance in difficult in-the-wild noise conditions in a severely under-resourced setting. Nested k-fold cross-validation was used to explore the hyperparameter space, and the trade-off between optimal parameters and model size is discussed. The performance effect of a BiLSTM layer compared to a unidirectional LSTM layer was also considered. We compare our systems with three established baselines on the AVA-Speech dataset. We find that significantly smaller models with near optimal parameters perform on par with larger models trained with optimal parameters. BiLSTM layers were shown to improve accuracy over unidirectional layers by ≈2% absolute on average. With an area under the curve (AUC) of 0.951, our system outperforms all baselines, including a much larger ResNet system, particularly in difficult noise conditions. |