Paper ID | SPE-52.5 |
Paper Title |
A Time-domain Convolutional Recurrent Network for Packet Loss Concealment |
Authors |
Ju Lin, Clemson University, United States; Yun Wang, Kaustubh Kalgaonkar, Gil Keren, Didi Zhang, Christian Fuegen, Facebook AI, United States |
Session | SPE-52: Speech Enhancement 8: Echo Cancellation and Other Tasks |
Location | Gather.Town |
Session Time: | Friday, 11 June, 13:00 - 13:45 |
Presentation Time: | Friday, 11 June, 13:00 - 13:45 |
Presentation |
Poster
|
Topic |
Speech Processing: [SPE-ENHA] Speech Enhancement and Separation |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
Packet loss may affect a wide range of applications that use voice over IP (VoIP), e.g. video conferencing. In this paper, we investigate a time-domain convolutional recurrent network (CRN) for online packet loss concealment. CRN comprises a convolutional encoder-decoder structure and long short-term memory (LSTM) layers, which have been shown to be suitable for real-time speech enhancement applications. Moreover, we propose lookahead and masked training to further improve the performance of the CRN framework. Experimental results show that the proposed system outperforms a baseline system using only LSTM layers in terms of two objective metrics -- perceptual evaluation of speech quality (PESQ) and short-term objective intelligibility (STOI); it also reduces the word error rate (WER) more than the baseline when used as a frontend for speech recognition. The advantage of the proposed system is also verified in a subjective evaluation by the mean opinion score (MOS). |