2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDBIO-7.1
Paper Title IMPROVED SUPERVISED TRAINING OF PHYSICS-GUIDED DEEP LEARNING IMAGE RECONSTRUCTION WITH MULTI-MASKING
Authors Burhaneddin Yaman, Seyed Amir Hossein Hosseini, Steen Moeller, Mehmet Akcakaya, University of Minnesota, United States
SessionBIO-7: Medical Image Formation and Reconstruction
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [CIS-MI] Medical Imaging: Image formation, reconstruction, restoration
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Physics-guided deep learning (PG-DL) via algorithm unrolling has received significant interest for improved image reconstruction, including MRI applications. These methods unroll an iterative optimization algorithm into a series of regularizer and data consistency units. The unrolled networks are typically trained end-to-end using a supervised approach. Current supervised PG-DL approaches use all of the available sub-sampled measurements in their data consistency units. Thus, the network learns to fit the rest of the measurements. In this study, we propose to improve the performance and robustness of supervised training by utilizing randomness by retrospectively selecting only a subset of all the available measurements for data consistency units. The process is repeated multiple times using different random masks during training for further enhancement. Results on knee MRI show that the proposed multi-mask supervised PG-DL enhances reconstruction performance compared to conventional supervised PG-DL approaches.