2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDAUD-32.6
Paper Title Investigating Local and Global Information for Automated Audio Captioning with Transfer Learning
Authors Xuenan Xu, Heinrich Dinkel, Mengyue Wu, Zeyu Xie, Kai Yu, Shanghai Jiao Tong University, China
SessionAUD-32: Audio for Multimedia and Audio Processing Systems
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-AUMM] Audio for Multimedia and Audio Processing Systems
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Automated audio captioning (AAC) aims at generating summarizing descriptions for audio clips. Multitudinous concepts are described in an audio caption, ranging from local information such as sound events to global information like acoustic scenery. Currently, the mainstream paradigm for AAC is the end-to-end encoder-decoder architecture, expecting the encoder to learn all levels of concepts embedded in the audio automatically. This paper first proposes a topic model for audio descriptions, comprehensively analyzing the hierarchical audio topics that are commonly covered. We then explore a transfer learning scheme to access local and global information. Two source tasks are identified to respectively represent local and global information, being Audio Tagging (AT) and Acoustic Scene Classification (ASC). Experiments are conducted on the AAC benchmark dataset Clotho and Audiocaps, amounting to a vast increase in all eight metrics with topic transfer learning. Further, it is discovered that local information and abstract representation learning are more crucial to AAC than global information and temporal relationship learning.