2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDAUD-27.5
Paper Title ESTIMATION OF MICROPHONE CLUSTERS IN ACOUSTIC SENSOR NETWORKS USING UNSUPERVISED FEDERATED LEARNING
Authors Alexandru Nelus, Rene Glitza, Rainer Martin, Institute of Communication Acoustics, Ruhr University Bochum, Germany
SessionAUD-27: Acoustic Sensor Array Processing 1: Array Design and Calibration
LocationGather.Town
Session Time:Friday, 11 June, 11:30 - 12:15
Presentation Time:Friday, 11 June, 11:30 - 12:15
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-ASAP] Acoustic Sensor Array Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract In this paper we present a privacy-aware method for estimating source-dominated microphone clusters in the context of acoustic sensor networks (ASNs). The approach is based on clustered federated learning which we adapt to unsupervised scenarios by employing a light-weight autoencoder model. The model is further optimized for training on very scarce data. In order to best harness the benefits of clustered microphone nodes in ASN applications, a method for the computation of cluster membership values is introduced. We validate the performance of the proposed approach using distance-based criteria and a network-wide classification task.