2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDIVMSP-33.6
Paper Title SRF-NET: SELECTIVE RECEPTIVE FIELD NETWORK FOR ANCHOR-FREE TEMPORAL ACTION DETECTION
Authors Ranyu Ning, Can Zhang, Yuexian Zou, Peking University, China
SessionIVMSP-33: Action Recognition
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVARS] Image & Video Analysis, Synthesis, and Retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Temporal action detection (TAD) is a challenging task which aims to temporally localize and recognize the human action in untrimmed videos. Current mainstream one-stage TAD approaches localize and classify action proposals relying on pre-defined anchors, where the location and scale for action instances are set by designers. Obviously, such an anchor-based TAD method limits its generalization capability and will lead to performance degradation when videos contain rich action variation. In this study, we explore to remove the requirement of pre-defined anchors for TAD methods. A novel TAD model termed as Selective Receptive Field Network (SRF-Net) is developed, in which the location offsets and classification scores at each temporal location can be directly estimated in the feature map and SRF-Net is trained in an end-to-end manner. Innovatively, a building block called Selective Receptive Field Convolution (SRFC) is dedicatedly designed which is able to adaptively adjust its receptive field size according to multiple scales of input information at each temporal location in the feature map. Extensive experiments are conducted on the THUMOS14 dataset, and superior results are reported comparing to state-of-the-art TAD approaches.