2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSAM-9.6
Paper Title Differential Convolution Feature Guided Deep Multi-scale Multiple Instance Learning for Aerial Scene Classification
Authors Beichen Zhou, Jingjun Yi, Qi Bi, Wuhan University, China
SessionSAM-9: Detection and Classification
LocationGather.Town
Session Time:Thursday, 10 June, 16:30 - 17:15
Presentation Time:Thursday, 10 June, 16:30 - 17:15
Presentation Poster
Topic Sensor Array and Multichannel Signal Processing: [RAS-DTCL] Target detection, classification, localization
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Aerial image classification is challenging for current deep learning models due to the varied geo-spatial object scales and the complicated scene spatial arrangement. Thus, it is necessary to stress the key local feature response from a variety of scales so as to represent discriminative convolutional features. In this paper, we propose a deep multi-scale multiple instance learning (DMSMIL) framework to tackle the above challenges. Firstly, we develop a differential multi-scale dilated convolution feature extractor to exploit the different patterns from different scales. Then, the deep features of each scale are fed into a multiple instance learning module to generate a bag-level probability prediction. Lastly, probability predictions from all the MIL branches are fused to generate the final semantic prediction. Extensive experiments on three widely-utilized aerial scene classification benchmarks demonstrate that our proposed DMSMIL outperforms the state-of-the-art approaches by a large margin.