Paper ID | SAM-2.4 |
Paper Title |
SYNTHETIC DATA FOR DNN-BASED DOA ESTIMATION OF INDOOR SPEECH |
Authors |
Femke B. Gelderblom, Norwegian University of Science and Technology & SINTEF, Norway; Yi Liu, Johannes Kvam, SINTEF, Norway; Tor Andre Myrvoll, Norwegian University of Science and Technology & SINTEF, Norway |
Session | SAM-2: Direction of Arrival Estimation 2 |
Location | Gather.Town |
Session Time: | Tuesday, 08 June, 16:30 - 17:15 |
Presentation Time: | Tuesday, 08 June, 16:30 - 17:15 |
Presentation |
Poster
|
Topic |
Sensor Array and Multichannel Signal Processing: [SAM-MAPR] Microphone array processing |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
This paper investigates the use of different room impulse response (RIR) simulation methods for synthesizing training data for deep neural network-based direction of arrival (DOA) estimation of speech in reverberant rooms. Different sets of synthetic RIRs are obtained using the image source method (ISM) and more advanced methods including diffuse reflections and/or source directivity. Multi-layer perceptron (MLP) deep neural network (DNN) models are trained on generalized cross correlation (GCC) features extracted for each set. Finally, models are tested on features obtained from measured RIRs. This study shows the importance of training with RIRs from directive sources, as resultant DOA models achieved up to 51% error reduction compared to the steered response power with phase transform (SRP-PHAT) baseline (significant with p<<.01), while models trained with RIRs from omnidirectional sources did worse than the baseline. The performance difference was specifically present when estimating the azimuth of speakers not facing the array directly. |