2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDMLSP-4.4
Paper Title AutoKWS: Keyword Spotting with Differentiable Architecture Search
Authors Bo Zhang, Wenfeng Li, Qingyuan Li, Weiji Zhuang, Xiangxiang Chu, Yujun Wang, Xiaomi, China
SessionMLSP-4: Machine Learning for Classification Applications 1
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-PRCL] Pattern recognition and classification
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Smart audio devices are gated by an always-on lightweight keyword spotting program to reduce power consumption. It is however challenging to design models that have both high accuracy and low latency for accurate and fast responsiveness. Many efforts have been made to develop end-to-end neural networks, in which depthwise separable convolutions, temporal convolutions, and LSTMs are adopted as building units. Nonetheless, these networks designed with human expertise may not achieve an optimal trade-off in an expansive search space. In this paper, we propose to leverage recent advances in differentiable neural architecture search to discover more efficient networks. Our found model attains 97.2% top-1 accuracy on Google Speech Command Dataset v1 with only nearly 100K parameters.