2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPTM-12.4
Paper Title Graph signal denoising via unrolling networks
Authors Siheng Chen, Mitsubishi Electric Research Laboratories (MERL), United States; Yonina C. Eldar, Weizmann Institute of Science, Israel
SessionSPTM-12: Sampling, Filtering and Denoising over Graphs
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Signal Processing Theory and Methods: [SIPG] Signal and Information Processing over Graphs
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract We propose an interpretable graph neural network framework to denoise single or multiple noisy graph signals. The proposed graph unrolling networks expand algorithm unrolling to the graph domain and provide an interpretation of the architecture design from a signal processing perspective. We unroll an iterative denoising algorithm by mapping each iteration into a single network layer where the feed-forward process is equivalent to iteratively denoising graph signals. We train the graph unrolling networks through unsupervised learning, where the input noisy graph signals are used to supervise the networks. By leveraging the learning ability of neural networks, we adaptively capture appropriate priors from input noisy graph signals, instead of manually choosing signal priors. To validate the proposed methods, we conduct extensive experiments on both real-world datasets and simulated datasets, and demonstrate that our methods have smaller denoising errors than conventional denoising algorithms and state-of-the-art graph neural networks. For denoising a single smooth graph signal, the normalized mean square error of the proposed networks is around 40% and 60% lower than that of graph Laplacian denoising and graph wavelets, respectively.