2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPTM-11.2
Paper Title GRAPH NEURAL NETWORK FOR LARGE-SCALE NETWORK LOCALIZATION
Authors Wenzhong Yan, Chinese University of Hong Kong, Shenzhen, China; Di Jin, Technische Universität Darmstadt, Germany; Zhidi Lin, Feng Yin, Chinese University of Hong Kong, Shenzhen, China
SessionSPTM-11: Graphs Neural Networks
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Signal Processing Theory and Methods: Signal Processing over Networks
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Graph neural networks (GNNs) are popular to use for classifying structured data in the context of machine learning. But surprisingly, they are rarely applied to regression problems. In this work, we adopt GNN for a classic but challenging nonlinear regression problem, namely the network localization. Our main findings are in order. First, GNN is potentially the best solution to large-scale network localization in terms of accuracy, robustness and computational time. Second, proper thresholding of the communication range is essential to its superior performance. Simulation results corroborate that the proposed GNN based method outperforms all state-of-the-art benchmarks by far. Such inspiring results are theoretically justified in terms of data aggregation, non-line-of-sight (NLOS) noise removal and low-pass filtering effect, all affected by the threshold for neighbor selection. Code is available at https://github.com/Yanzongzi/GNN-For-localization.