2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-38.6
Paper Title NOVEL ARCHITECTURES FOR UNSUPERVISED INFORMATION BOTTLENECK BASED SPEAKER DIARIZATION OF MEETINGS
Authors Nauman Dawalatabad, Indian Institute of Technology, Madras, India; Srikanth Madikeri, Idiap Research Institute, Switzerland; C Chandra Sekhar, Hema A Murthy, Indian Institute of Technology, Madras, India
SessionSPE-38: Speaker Recognition 6: Self-supervised and Unsupervised Learning
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Speech Processing: [SPE-SPKR] Speaker Recognition and Characterization
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Speaker diarization is an important problem that is topical, and is especially useful as a preprocessor for conversational speech related applications. The objective of this article is two-fold: (i) segment initialization by uniformly distributing speaker information across the initial segments, and (ii) incorporating speaker discriminative features within the unsupervised diarization framework. In the first part of the work, a varying length segment initialization technique for Information Bottleneck (IB) based speaker diarization system using phoneme rate as the side information is proposed. This initialization distributes speaker information uniformly across the segments and provides a better starting point for IB based clustering. In the second part of the work, we present a Two-Pass Information Bottleneck (TPIB) based speaker diarization system that incorporates speaker discriminative features during the process of diarization. During the first pass of the TPIB system, a coarse segmentation is performed using IB based clustering. The alignments obtained are used to generate speaker discriminative features using a shallow feed-forward neural network and linear discriminant analysis. The discriminative features obtained are used in the second pass to obtain the final speaker boundaries. In the final part of the paper, variable segment initialization is combined with the TPIB framework.