2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-10.5
Paper Title HEAD-SYNCHRONOUS DECODING FOR TRANSFORMER-BASED STREAMING ASR
Authors Mohan Li, Cătălin Zorilă, Rama Doddipatla, Toshiba Cambridge Research Laboratory, United Kingdom
SessionSPE-10: Speech Recognition 4: Transformer Models 2
LocationGather.Town
Session Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Poster
Topic Speech Processing: [SPE-LVCR] Large Vocabulary Continuous Recognition/Search
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Online Transformer-based automatic speech recognition (ASR) systems have been extensively studied due to the increasing demand for streaming applications. Recently proposed Decoder-end Adaptive Computation Steps (DACS) algorithm for online Transformer ASR was shown to achieve state-of-the-art performance and outperform other existing methods. However, like any other online approach, the DACS-based attention heads in each of the Transformer decoder layers operate independently (or asynchronously) and lead to diverged attending positions. Since DACS employs a truncation threshold to determine the halting position, some of the attention weights are cut off untimely and might impact the stability and precision of decoding. To overcome these issues, here we propose a head-synchronous (HS) version of the DACS algorithm, where the boundary of attention is jointly detected by all the DACS heads in each decoder layer. ASR experiments on Wall Street Journal (WSJ), AIShell-1 and Librispeech show that the proposed method consistently outperforms vanilla DACS and achieves state-of-the-art performance. We will also demonstrate that HS-DACS has reduced decoding cost when compared to vanilla DACS.