2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-3.5
Paper Title LIGHTSPEECH: LIGHTWEIGHT AND FAST TEXT TO SPEECH WITH NEURAL ARCHITECTURE SEARCH
Authors Renqian Luo, University of Science and Technology of China, China; Xu Tan, Rui Wang, Tao Qin, Microsoft Research Asia, China; Jinzhu Li, Sheng Zhao, Microsoft Azure Speech, China; Enhong Chen, University of Science and Technology of China, China; Tie-Yan Liu, Microsoft Research Asia, China
SessionSPE-3: Speech Synthesis 1: Architecture
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-SYNT] Speech Synthesis and Generation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Text to speech (TTS) has been broadly used to synthesize natural and intelligible speech in different scenarios. Deploying TTS in various end devices such as mobile phones or embedded devices requires extremely small memory usage and inference latency. While non-autoregressive TTS models such as FastSpeech have achieved significantly faster inference speed than autoregressive models, their model size and inference latency are still large for the deployment in resource constrained devices. In this paper, we propose LightSpeech, which leverages neural architecture search (NAS) to automatically design more lightweight and efficient models based on FastSpeech. We first profile the components of current FastSpeech model and carefully design a novel search space containing various lightweight and potentially effective architectures. Then NAS is utilized to automatically discover well performing architectures within the search space. Experiments show that the model discovered by our method achieves 15x model compression ratio and 6.5x inference speedup on CPU with on par voice quality. Audio demos are provided at https://speechresearch.github.io/lightspeech.