2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPTM-11.6
Paper Title WIDE AND DEEP GRAPH NEURAL NETWORKS WITH DISTRIBUTED ONLINE LEARNING
Authors Zhan Gao, University of Pennsylvania, United States; Fernando Gama, University of California, Berkeley, United States; Alejandro Ribeiro, University of Pennsylvania, United States
SessionSPTM-11: Graphs Neural Networks
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Signal Processing Theory and Methods: Signal Processing over Networks
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Graph neural networks (GNNs) learn representations from network data with naturally distributed architectures, rendering them well-suited candidates for decentralized learning. Oftentimes, this decentralized graph support changes with time due to link failures or topology variations. These changes create a mismatch between the graphs on which GNNs were trained and the ones on which they are tested. Online learning can be used to retrain GNNs at testing time, overcoming this issue. However, most online algorithms are centralized and work on convex problems (which GNNs rarely lead to). This paper proposes the Wide and Deep GNN (WD-GNN), a novel architecture that can be easily updated with distributed online learning mechanisms. The WD-GNN comprises two components: the wide part is a bank of linear graph filters and the deep part is a GNN. At training time, the joint architecture learns a nonlinear representation from data. At testing time, the deep part (nonlinear) is left unchanged, while the wide part is retrained online, leading to a convex problem. We derive convergence guarantees for this online retraining procedure and further propose a decentralized alternative. Experiments on the robot swarm control for flocking corroborate theory and show potential of the proposed architecture for distributed online learning.