Paper ID | SPE-31.5 |
Paper Title |
Decentralizing Feature Extraction with Quantum Convolutional Neural Network for Automatic Speech Recognition |
Authors |
Chao-Han Huck Yang, Jun Qi, Georgia Institute of Technology, United States; Pin-Yu Chen, IBM Research, United States; Yen-Chi Samuel Chen, Brookhaven National Laboratory, United States; Sabato Marco Siniscalchi, University of Enna, Italy; Xiaoli Ma, Brookhaven National Laboratory, United States; Chin-Hui Lee, Georgia Institute of Technology, United States |
Session | SPE-31: Speech Recognition 11: Novel Approaches |
Location | Gather.Town |
Session Time: | Thursday, 10 June, 13:00 - 13:45 |
Presentation Time: | Thursday, 10 June, 13:00 - 13:45 |
Presentation |
Poster
|
Topic |
Speech Processing: [SPE-GASR] General Topics in Speech Recognition |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
We propose a novel decentralized feature extraction approach in federated learning to address privacy-preservation issues for speech recognition. It is built upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction, and a recurrent neural network (RNN) based end-to-end acoustic model (AM). To enhance model parameter protection in a decentralized architecture, an input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram, and the corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters. The encoded features are then down-streamed to the local RNN model for the final recognition. The proposed decentralized framework takes advantage of the quantum learning progress to secure models and to avoid privacy leakage attacks. Testing on the Google Speech Commands Dataset, the proposed QCNN encoder attains a competitive accuracy of 95.12% in a decentralized model, which is better than the previous architectures using centralized RNN models with convolutional features. We also conduct an in-depth study of different quantum circuit encoder architectures to provide insights into designing QCNN-based feature extractors. Neural saliency analyses demonstrate a correlation between the proposed QCNN features, class activation maps, and input spectrograms. We provide an implementation for future studies. |