2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-37.4
Paper Title A JOINT TRAINING FRAMEWORK OF MULTI-LOOK SEPARATOR AND SPEAKER EMBEDDING EXTRACTOR FOR OVERLAPPED SPEECH
Authors Naijun Zheng, The Chinese University of Hong Kong, Hong Kong SAR China; Na Li, Bo Wu, Meng Yu, Tencent AI Lab, China; JianWei Yu, The Chinese University of Hong Kong, Hong Kong SAR China; Chao Weng, Dan Su, Tencent AI Lab, China; XunYing Liu, Helen Meng, The Chinese University of Hong Kong, Hong Kong SAR China
SessionSPE-37: Speaker Recognition 5: Neural Embedding
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Speech Processing: [SPE-SPKR] Speaker Recognition and Characterization
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract In multi-talker cases, overlapped speech degrades the speaker verification (SV) performance dramatically. To tackle this challenging problem, speech separation with multi-channel techniques can be adopted to extract each speaker's signals to improve the SV performance. In this paper, a joint training framework of the front-end multi-look speech separator and the back-end speaker embedding extractor is proposed for multi-channel overlapped speech. To better leverage the complementarity between the speech separator and the speaker embedding extractor, several training strategies are proposed to jointly optimize the two modules. Experimental results show that the proposed joint training framework significantly outperforms the individual SV system by around 52% relative EER reduction. Additionally, the robustness of the proposed framework is further evaluated under different conditions.