2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-49.2
Paper Title FAST DCTTS: EFFICIENT DEEP CONVOLUTIONAL TEXT-TO-SPEECH
Authors Minsu Kang, Jihyun Lee, Simin Kim, Injung Kim, Handong Global University, South Korea
SessionSPE-49: Speech Synthesis 7: General Topics
LocationGather.Town
Session Time:Friday, 11 June, 11:30 - 12:15
Presentation Time:Friday, 11 June, 11:30 - 12:15
Presentation Poster
Topic Speech Processing: [SPE-SYNT] Speech Synthesis and Generation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract We propose an end-to-end speech synthesizer, Fast DCTTS, that synthesizes speech in real time on a single CPU thread. The proposed model is composed of a carefully-tuned lightweight network designed by applying multiple network reduction and fidelity improvement techniques. In addition, we propose a novel group highway activation that can compromise between computational efficiency and the regularization effect of the gating mechanism. As well, we introduce a new metric called elastic mel-cepstral distortion (EMCD)to measure the fidelity of the output mel-spectrogram. In experiments, we analyze the effect of the acceleration techniques on speed and speech quality. Compared with the baseline model, the proposed model exhibits improved MOS from 2.62 to 2.74 with only 1.76% computation and 2.75% parameters. The speed on a single CPU thread was improved by 7.45 times, which is fast enough to produce mel-spectrogram in real time without GPU.