2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDMLSP-41.6
Paper Title AUGMENTING TRANSFERRED REPRESENTATIONS FOR STOCK CLASSIFICATION
Authors Elizabeth Fons, University of Manchester, United Kingdom; Paula Dawson, AllianceBernstein, United Kingdom; Xiao-jun Zeng, John Keane, University of Manchester, United Kingdom; Alexandros Iosifidis, Aarhus University, Denmark
SessionMLSP-41: Deep Learning Optimization
LocationGather.Town
Session Time:Friday, 11 June, 11:30 - 12:15
Presentation Time:Friday, 11 June, 11:30 - 12:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-TRL] Transfer learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Stock classification is a challenging task due to high levels of noise and volatility of stocks returns. In this paper we show that using transfer learning can help with this task, by pre-training a model to extract universal features on the full universe of stocks of the S&P500 index and then transferring it to another model to directly learn a trading rule. Transferred models present more than double the risk-adjusted returns than their counterparts trained from zero. In addition, we propose the use of data augmentation on the feature space defined as the output of a pre-trained model (i.e. augmenting the aggregated time-series representation). We compare this augmentation approach with the standard one, i.e. augmenting the time-series in the input space. We show that augmentation methods on the feature space leads to 20% increase in risk-adjusted return compared to a model trained with transfer learning but without augmentation.