2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPTM-15.3
Paper Title LEARNING MIXED MEMBERSHIP FROM ADJACENCY GRAPH VIA SYSTEMATIC EDGE QUERY: IDENTIFIABILITY AND ALGORITHM
Authors Shahana Ibrahim, Xiao Fu, Oregon State University, United States
SessionSPTM-15: Graph Topology Inference and Clustering
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Signal Processing Theory and Methods: [SIPG] Signal and Information Processing over Graphs
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Graph clustering is a core technique for network analysis problems, e.g., community detection. This work puts forth a node clustering approach for largely incomplete adjacency graphs. Under the considered scenario, instead of having access to the complete graph, only a small amount of queries about the graph edges can be made for node clustering. This task is well-motivated in many large-scale network analysis problems, where complete graph acquisition is prohibitively costly. Prior work tackles this problem under the setting that the nodes only admit single membership and the clusters are disjoint, yet multiple membership nodes and overlapping clusters often arise in practice. Existing approaches also rely on random edge query patterns and convex optimization-based formulations, which give rise to a number of implementation and scalability challenges. This work offers a framework that provably learns the mixed membership of nodes from overlapping clusters using limited edge information. Our method is equipped with a systematic edge query pattern, which is arguably easier to implement relative to the random counterparts in certain applications, e.g., field survey based graph analysis. A lightweight scalable algorithm is proposed, and its performance characterizations are presented. Numerical experiments are used to showcase the effectiveness of our method.