2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-32.4
Paper Title SEMI-SUPERVISED SPEECH RECOGNITION VIA GRAPH-BASED TEMPORAL CLASSIFICATION
Authors Niko Moritz, Takaaki Hori, Jonathan Le Roux, Mitsubishi Electric Research Laboratories (MERL), United States
SessionSPE-32: Speech Recognition 12: Self-supervised, Semi-supervised, Unsupervised Training
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-GASR] General Topics in Speech Recognition
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Semi-supervised learning has demonstrated promising results in automatic speech recognition (ASR) by self-training using a seed ASR model with pseudo-labels generated for unlabeled data. The effectiveness of this approach largely relies on the pseudo-label accuracy, for which typically only the 1-best ASR hypothesis is used. However, alternative ASR hypotheses of an N-best list can provide more accurate labels for an unlabeled speech utterance and also reflect uncertainties of the seed ASR model. In this paper, we propose a generalized form of the connectionist temporal classification (CTC) objective that accepts a graph representation of the training labels. The newly proposed graph-based temporal classification (GTC) objective is applied for self-training with WFST-based supervision, which is generated from an N-best list of pseudo-labels. In this setup, GTC is used to learn not only a temporal alignment, similarly to CTC, but also a label alignment to obtain the optimal pseudo-label sequence from the weighted graph. Results show that this approach can effectively exploit an N-best list of pseudo-labels with associated scores, considerably outperforming standard pseudo-labeling, with ASR results approaching an oracle experiment in which the best hypotheses of the N-best lists are selected manually.